3.75 \(\int \sqrt{a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx\)

Optimal. Leaf size=123 \[ \frac{(a-b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 \sqrt{a} f}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}-\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f} \]

[Out]

((a - b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*Sqrt[a]*f) + (Sqrt[b]*ArcTanh[(Sqrt
[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f - (Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^
2])/(2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.131126, antiderivative size = 123, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.28, Rules used = {4132, 467, 523, 217, 206, 377, 203} \[ \frac{(a-b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 \sqrt{a} f}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}-\frac{\sin (e+f x) \cos (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^2,x]

[Out]

((a - b)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*Sqrt[a]*f) + (Sqrt[b]*ArcTanh[(Sqrt
[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f - (Cos[e + f*x]*Sin[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^
2])/(2*f)

Rule 4132

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Dist[ff^(m + 1)/f, Subst[Int[(x^m*ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p)/(
1 + ff^2*x^2)^(m/2 + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Integer
Q[n/2]

Rule 467

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*n*(p + 1)), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \sqrt{a+b \sec ^2(e+f x)} \sin ^2(e+f x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^2 \sqrt{a+b+b x^2}}{\left (1+x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{\operatorname{Subst}\left (\int \frac{a+b+2 b x^2}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac{b \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}\\ &=\frac{(a-b) \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 \sqrt{a} f}+\frac{\sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac{\cos (e+f x) \sin (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}\\ \end{align*}

Mathematica [C]  time = 5.75247, size = 432, normalized size = 3.51 \[ \frac{e^{-i (e+f x)} \cos (e+f x) \sqrt{4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac{2 e^{2 i (e+f x)} \left (-i (a-b) \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b\right )+i (a-b) \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b e^{2 i (e+f x)}\right )-4 \sqrt{a} \sqrt{b} \log \left (\frac{f \left (i \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}-\sqrt{b} \left (-1+e^{2 i (e+f x)}\right )\right )}{2 b \left (1+e^{2 i (e+f x)}\right )}\right )+2 a f x-2 b f x\right )}{\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}+i \left (-1+e^{2 i (e+f x)}\right )\right ) \sqrt{a+b \sec ^2(e+f x)}}{4 \sqrt{2} f \sqrt{a \cos (2 e+2 f x)+a+2 b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sec[e + f*x]^2]*Sin[e + f*x]^2,x]

[Out]

(Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]*(I*(-1 + E^((2*I)*(e + f*x))) +
(2*E^((2*I)*(e + f*x))*(2*a*f*x - 2*b*f*x - I*(a - b)*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E
^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + I*(a - b)*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*
(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 4*Sqrt[a]*Sqrt[b]*Log[((
-(Sqrt[b]*(-1 + E^((2*I)*(e + f*x)))) + I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*f)/(2
*b*(1 + E^((2*I)*(e + f*x))))]))/(Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]))*Sqrt
[a + b*Sec[e + f*x]^2])/(4*Sqrt[2]*E^(I*(e + f*x))*f*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]])

________________________________________________________________________________________

Maple [C]  time = 0.321, size = 1290, normalized size = 10.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

-1/2/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*(-2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^
(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*
x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1
/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1
/2))*a*sin(f*x+e)+2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*
x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*E
llipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b
),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*b*sin(f*x+e)+2^(1/2)*(1/(a
+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x
+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^
(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^
(1/2))*a*sin(f*x+e)+2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*
x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*E
llipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)
*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b*sin(f*x+e)-4*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2
)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*co
s(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e
),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))
^(1/2))*b*sin(f*x+e)+cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a-cos(f*x+e)^2*((2*I*a^(1/2)*b^(1/2)
+a-b)/(a+b))^(1/2)*a+cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b-((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1
/2)*b)*cos(f*x+e)*sin(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)/(-1+cos(f*x+e))/(b+a*cos(f*x+e)^2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 1.67062, size = 3478, normalized size = 28.28 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - sqrt(-a)*(a - b)*log(128*a
^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4
- 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*c
os(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2
*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) - 4*a*sqr
t(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*
cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(a*f)
, -1/16*(8*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) - 8*a*sqrt(-b)*arctan(-1/2*
((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x
 + e)^2 + b^2)*sin(f*x + e))) - sqrt(-a)*(a - b)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6
 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 -
 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*
(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*c
os(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/(a*f), -1/8*(4*a*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
*cos(f*x + e)*sin(f*x + e) + (a - b)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 +
 (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4
- a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 2*a*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*
x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*
x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4))/(a*f), -1/8*(4*a*sqrt((a*cos(f*x + e)^2 +
 b)/cos(f*x + e)^2)*cos(f*x + e)*sin(f*x + e) + (a - b)*sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*
b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*
a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e))) - 4*a*sqrt(-b)*arctan(-1/2
*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*
x + e)^2 + b^2)*sin(f*x + e))))/(a*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \sec ^{2}{\left (e + f x \right )}} \sin ^{2}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**2*(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sec(e + f*x)**2)*sin(e + f*x)**2, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \sec \left (f x + e\right )^{2} + a} \sin \left (f x + e\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sec(f*x + e)^2 + a)*sin(f*x + e)^2, x)